Course Title – Mathematics for Business & Social Sciences II (Formerly known as Mathematical Analysis for Business)

Course Prefix and Number – MATH 1325

Department - MATH Division – Math and Science

Course Type: (check one)

☐ Academic General Education Course (from ACGM – but not in WCJC Core)
☒ Academic WCJC Core Course
☐ WECM course (This course is a Special Topics or Unique Needs Course: Y or N)

Semester Credit Hours #: Lecture Hours #: Lab/Other Hours #: 3:3:0

EQUATED PAY HOURS FOR COURSE - 3

Course Catalog Description: Limits and continuity, derivatives, graphing and optimization, exponential and logarithmic functions, antiderivatives, integration, applications to management, economics, and business.

Prerequisites/Co-requisites: MATH 1324 or equivalent. (The content level of MATH 1325 is expected to be below the content level of Calculus I, MATH 2413)

Type: ACAD

Prepared by Dale Neaderhouser Date 8-24-13

Reviewed by department head Dale Neaderhouser Date 8-24-13

Accuracy verified by Division Chair Kevin Dees Date 8-24-13

Approved by Dean or Vice President of Instruction gghunt Date 8-24-13

Purpose: It is the intention of this Administrative-Master Syllabus to provide a general description of the course, outline the required elements of the course and to lay the foundation for course assessment for the improvement of student learning, as specified by the faculty of Wharton County Junior College, regardless of who teaches the course, the timeframe by which it is instructed, or the instructional method by which the course is delivered. It is not intended to restrict the manner by which an individual faculty member teaches the course but to be an administrative tool to aid in the improvement of instruction.
I. Topical Outline
Major areas of coverage:
 A) Limits
 B) Average rate of change
 C) Instantaneous rate of change
 D) Definition of derivative as a limit
 E) Basic rules for the derivative of a function
 1) The constant rule
 2) The power rule
 3) The constant multiple rule
 4) The sum or difference rule
 5) The product rule
 6) The quotient rule
 7) The chain rule
 8) The generalized power rule
 9) The exponential rule
 F) Applications of the derivative
 1) Find the marginal cost
 2) Find the marginal revenue
 3) Find the marginal profit
 4) Find the relative maximum and relative minimum of a function
 5) Find the absolute maximum and absolute minimum of a function on a closed interval
 6) Solve a word or story problem finding a maximum or minimum
 G) Definition of the anti-derivative
 H) Find the anti-derivative of a function
 I) Find the area bounded by a function f(x), the x-axis, and two vertical lines x=a and x=b
 J) Evaluate a definite integral
 K) With functions of several variables, find the partial derivative
 L) Evaluate a partial derivative at a given point
II. Course Learning Outcomes

<table>
<thead>
<tr>
<th>Learning Outcomes</th>
<th>Assessment Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon successful completion of this course, students will:</td>
<td>A. Hour exam and department final.</td>
</tr>
<tr>
<td>A) Find the limit of a function</td>
<td>B. Hour exam and department final.</td>
</tr>
<tr>
<td>B) Find the derivative of a function</td>
<td>C. Hour exam and department final.</td>
</tr>
<tr>
<td>C) Apply the derivative to problems such as:</td>
<td>D. Hour exam and department final.</td>
</tr>
<tr>
<td>1) Find the marginal cost, marginal revenue and marginal profit of a function</td>
<td>E. Hour exam and department final.</td>
</tr>
<tr>
<td>2) Find the relative maximum and relative minimum of a function</td>
<td>F. Hour exam and department final.</td>
</tr>
<tr>
<td>3) Find the absolute maximum and absolute minimum of a function</td>
<td>G. Hour exam and department final.</td>
</tr>
<tr>
<td>D) Find the anti-derivative of a function</td>
<td>H. Hour exam and department final.</td>
</tr>
<tr>
<td>E) Find the area bounded by a function $f(x)$, the x-axis, and two vertical lines, $x=a$ and $x=b$</td>
<td>Outcomes assessed by:</td>
</tr>
<tr>
<td>F) Evaluate a definite integral</td>
<td>Hour exams</td>
</tr>
<tr>
<td>G) With functions of several variables, find a partial derivative with respect to a given variable</td>
<td>Final</td>
</tr>
<tr>
<td>H) Evaluate a partial derivative at a given point</td>
<td>Short Answer</td>
</tr>
<tr>
<td></td>
<td>Discussion Board</td>
</tr>
</tbody>
</table>

III. Required Text(s), Optional Text(s) and/or Materials to be Supplied by Student.

Calculus with Applications, 10th Edition 2012. Lial, Pearson Addison-Wesley (required)

Calculator (instructor’s discretion)

IV. Suggested Course Maximum - 35

V. List any specific spatial or physical requirements beyond a typical classroom required to teach the course.

Students must have computer access to the WCJC website, their WCJC student email and online accounts. WCJC has open computer labs, with internet access, on all campuses for students to use.

VI. Course Requirements/Grading System – Describe any course specific requirements such as research papers or reading assignments and the generalized grading format for the course

A. Average of one hour exams 40-85%
B. Daily participation, quizzes, extra credit 0-15%
C. Homework grade 0-20%
d. Comprehensive Department Final 15-30%

A= 90-100 B= 80-89 C= 70-79 D= 60-69 F= 59 and below
VII. Curriculum Checklist

☑ - Academic WCJC Core Course
 Attach the Core Curriculum Review Forms
 • ☑ Critical Thinking
 • ☑ Communication
 • ☑ Empirical & Quantitative Skills
 • ☑ Teamwork
 • ☑ Social Responsibility
 • ☑ Personal Responsibility

☐ - General Education Courses (ACGM but non-Core)
 Include the following:
 • Objectives/outcomes in space below.

☐ - WECM Courses
 Include the following:
 • SCANS Competencies (attach Program SCANS Checklist)
 • WECM and other outcomes/objectives in space provided below.
Core Curriculum Review Form

Foundational Component Area: **Mathematics**

Core Objective: **Critical Thinking Skills**—to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information

<table>
<thead>
<tr>
<th>SLO Status</th>
<th>Student Learning Outcome (SLO)</th>
<th>Learning Activity</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>The SLO is: Insert SLO (from Administrative Master Syllabi(AMS)) below</td>
<td>Provide a brief name and description of the sample learning activity:</td>
<td>Provide a brief name and description of the sample quiz, exam, rubric, assignment, etc. for assessing the objective:</td>
<td></td>
</tr>
<tr>
<td>■ Existing</td>
<td>■ New</td>
<td>State Mandated</td>
<td>Apply the derivative to find the marginal cost, marginal revenue or marginal profit of a function. (AMS SLO #C1)</td>
</tr>
<tr>
<td>■ Existing</td>
<td>■ Revised</td>
<td>■ New</td>
<td>■ State Mandated</td>
</tr>
<tr>
<td>■ Existing</td>
<td>■ Revised</td>
<td>■ New</td>
<td>■ State Mandated</td>
</tr>
</tbody>
</table>

Department Head: __ Dale Neaderhouser ____________ Date: __8-24-13____

WCJC Core Curriculum Review Form-Mathematics (April 2013) (Modified from Collin College)
Core Objective: **Communication Skills**—to include effective development, interpretation and expression of ideas through written, oral and visual communication

<table>
<thead>
<tr>
<th>SLO Status</th>
<th>Student Learning Outcome (SLO)</th>
<th>Learning Activity</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>The SLO is:</td>
<td>Insert SLO (from Administrative Master Syllabi(AMS)) below</td>
<td>Provide a brief name and description of the sample learning activity:</td>
<td>Provide a brief name and description of the sample quiz, exam, rubric, assignment, etc. for assessing the objective:</td>
</tr>
<tr>
<td>□ Existing □ Revised □ New □ State Mandated</td>
<td>Apply the derivative to find the marginal cost, marginal revenue or marginal profit of a function.. (AMS SLO #C1)</td>
<td>A word problem (application) where the student must identify variables, assemble the correct formulas and solve for the desired result. Including a brief paragraph explaining what was done.</td>
<td>A quiz, test or discussion board artifact showing the student’s written answer. Grading for correctness and the rubric for communication will assess this.</td>
</tr>
<tr>
<td>□ Existing □ Revised □ New □ State Mandated</td>
<td>Find the derivative of a function. (AMS SLO #B)</td>
<td>A written paragraph explaining the steps or rules one uses to compute the derivative of a function.</td>
<td>A quiz, test or discussion board artifact showing the student’s written answer. Grading for correctness and the rubric for communication will assess this.</td>
</tr>
<tr>
<td>□ Existing □ Revised □ New □ State Mandated</td>
<td>Find the anti-derivative of a function. (AMS SLO #D)</td>
<td>Have the student grade an incorrect problem. The student should write a brief paragraph stating what was done incorrectly and what must be done to correct the solution.</td>
<td>A quiz, test or scanned artifact showing the student’s written answer. Grading for correctness and the rubric for communication will assess this.</td>
</tr>
</tbody>
</table>
Foundational Component Area: **Mathematics**

Core Objective: **Empirical and Quantitative Skills**—to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions

Core Objective:

Empirical and Quantitative Skills—to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions.

Student Learning Outcome supporting core objective:

For each core objective, there must be at least two different methods of assessment.

<table>
<thead>
<tr>
<th>SLO Status</th>
<th>Student Learning Outcome (SLO)</th>
<th>Learning Activity</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing</td>
<td>Insert SLO (from Administrative Master Syllabi) below</td>
<td>Provide a brief name and description of the sample learning activity:</td>
<td>Provide a brief name and description of the sample quiz, exam, rubric, assignment, etc. for assessing the objective:</td>
</tr>
<tr>
<td>■ Existing</td>
<td>Evaluate a definite integral. (AMS SLO #F)</td>
<td>A problem where the student computes the numerical value of a definite integral.</td>
<td>A quiz, test or discussion board artifact showing the student’s written steps and answer. Grading for correctness and the rubric for EQS will assess this.</td>
</tr>
<tr>
<td>■ Existing</td>
<td>Apply the derivative to find the relative maximum or minimum of a function. (AMS SLO #C2)</td>
<td>A problem where the student uses the derivative to find a numerical value for the relative minimum or maximum of a function.</td>
<td>A quiz, test or discussion board artifact showing the student’s written steps and answer. Grading for correctness and the rubric for EQS will assess this.</td>
</tr>
<tr>
<td>■ Existing</td>
<td>Find the limit of a function. (AMS SLO #A)</td>
<td>A problem where the student finds the limit from the left and right of a function. A sketch or graph is optional.</td>
<td>A quiz, test or scanned artifact showing the student’s written steps and answer. Grading for correctness and the rubric for EQS will assess this.</td>
</tr>
</tbody>
</table>