Purpose: It is the intention of this Administrative-Master Syllabus to provide a general description of the course, outline the required elements of the course and to lay the foundation for course assessment for the improvement of student learning, as specified by the faculty of Wharton County Junior College, regardless of who teaches the course, the timeframe by which it is instructed, or the instructional method by which the course is delivered. It is not intended to restrict the manner by which an individual faculty member teaches the course but to be an administrative tool to aid in the improvement of instruction.

Course Title - Industrial Electronics
Course Prefix and Number - ELMT 2433
Department – Electronics Engineering Technology
Division - Technology & Business
Course Type: (check one)
☐ Academic General Education Course (from ACGM – but not in WCJC Core)
☐ Academic WCJC Core Course
☒WECM course (This course is a Special Topics or Unique Needs Course: Y☐ or N☒)

Semester Credit Hours #: Lecture hours#: Lab/Other Hours #: 4:3:3
Equated Pay hours for course - 4.5

Course Catalog Description - A study of devices, circuits, and systems primarily used in automated manufacturing and/or process control including computer controls and interfacing between mechanical, electrical, electronic, and computer equipment. Includes presentation of programming schemes. Analog and digital control loops and their application in process control and robotics. Microprocessors for control and monitoring. Sensing devices for pressure, level, flow, temperature, and position. Signal processing: A/D and D/A conversion, feedback, and servos. Laboratory work includes microprocessor and robotics interfacing and control circuits.

Prerequisites/Co Requisites - Credit for CETT 1405, and CETT 1429, and CETT 1345

Prepared by David Kucera

Reviewed by Department Head David Kucera

Accuracy verified by Division Chair David Kucera

Approved by Dean or Vice President of Instruction Leigh Ann Collins

Date 05-20-15
Date 05-20-15
Date 05-20-15
Date 12/3/15
I. Topical Outline – Each offering of this course must include the following topics (be sure to include information regarding lab, practicum, clinical or other non-lecture instruction):

The following performance will be expected of any student completing this course with a passing grade. There is no absolute time limit on the performance of these objectives, unless noted, but the grade received by the student will depend, in part, on the relative speed and precision of the student's performance in these tasks. Where subjective evaluations are indicated, the instructor will make these judgments based on his or her knowledge of the skills required to place a graduate with the expectation of successful on-job performance.

The student will be expected to demonstrate mastery in the following topics in written examination or laboratory demonstration:

- Solid-state devices and circuits
- Programmable controllers
- Thyristors
- Lasers
- Fiber optics
- Power supplies
- Op-amp circuits
- Open- and closed-loop feedback systems
- Input devices
- Output devices
- AC and DC motors
- Motor control devices
- Robots and other motion control systems
- Data communications

II. Course Learning Outcomes
Course Learning Outcome

Upon successful completion of this course, students will:

1. Describe how electronic input and output circuits are used to control automated manufacturing and/or process systems.

2. Identify basic elements used for input, output, timing, and control

3. Define how programmable electronic systems use input data to alter output responses.

4. Troubleshoot a representative system.

5. Demonstrate how system operation can be altered with software programming.

Methods of Assessment

Assessment of outcomes 1,2,3,4,5 will be performed through periodic written quizzes, exams, and hands-on laboratory exercises.

III. Required Text(s), Optional Text(s) and/or Materials to be Supplied by Student.

A course specific text covering Industrial Electronics. Example: Industrial Electronics by Frenzel

Calculator – scientific with Sine, Cosine, Tangent capabilities

IV. Suggested Course Maximum - Lecture 20; Lab 20

V. List any specific spatial or physical requirements beyond a typical classroom required to teach the course.

Lecture facilities for 20 students. An industry related Electronics laboratory facilities for 20 students must include 10 bench positions each with a PC, digital meter, logic probe, digital oscilloscope and probes, bread boarding facility with power supply and signal generator. The lab will contain industrial equipment and a supply of basic circuit components.

VI. Course Requirements/Grading System – Describe any course specific requirements such as research papers or reading assignments and the generalized grading format for the course

Evaluation of Performance:
Course grades will be determined by the percentage of course objectives for which the student can demonstrate mastery and by attendance as stated in the Departmental Policy sheet provided to the student. Mastery of course objectives will be determined by written examinations, an attendance grade as described in the Departmental Policy handout, a daily work grade which will include graded homework, graded laboratory work, and a comprehensive final exam.

Approximate Grade Evaluation Summary:
Major tests ... 60%
Attendance... 10%
Lab reports, homework, and quizzes. 15%
Comprehensive Final examination 15%

A = 100 – 90
B = 89 – 80
C = 79 – 70
D = 69 - 60
F = 59 - 0

VII. Curriculum Checklist

☐ - Academic General Education Course (from ACGM – but not in WCJC Core)
No additional documentation needed

☐ - Academic WCJC Core Course
Attach the Core Curriculum Checklist, including the following:
- Basic Intellectual Competencies
- Perspectives
- Exemplary Educational Objectives

☒ - WECM Courses
If needed, revise the Program SCANS Matrix & Competencies Checklist.