Course Title - Linear Integrated Circuits
Course Prefix and Number - CETT 1457
Department – Electronics Eng. Tech.
Division - Technology and Business

Course Type: (check one)
- [] Academic General Education Course (from ACGM – but not in WCJC Core)
- [] Academic WCJC Core Course
- [X] WECM course (This course is a Special Topics or Unique Needs Course: **Y** or **N**)

Semester Credit Hours # : Lecture hours # : Lab/Other Hours #
4:3:3

Equate Pay hours for course – 4.5

Course Catalog Description - A study of the characteristics, operations, stabilization, testing, and feedback techniques of linear integrated circuits. Application in computation, measurements, instrumentation, and active filtering.

Prerequisites/Co Requisites - Credit for CETT 1405 and CETT 1429

<table>
<thead>
<tr>
<th>List Lab/Other Hours</th>
<th>Lab Hours</th>
<th>Clinical Hours</th>
<th>Practicum Hours</th>
<th>Other (list)</th>
</tr>
</thead>
</table>

Prepared by David Kucera
Reviewed by Department Head David Kucera
Accuracy verified by Division Chair David Kucera
Approved by Dean or Vice President of Instruction Leigh Ann Collins

Date 05/15/15 05/20/15 05/20/15 12/3/15
I. Topical Outline – Each offering of this course must include the following topics (be sure to include information regarding lab, practicum, clinical or other non-lecture instruction):

The following performance will be expected of any student completing this course with a passing grade. There is no absolute time limit on the performance of these objectives, unless noted, but the grade received by the student will depend, in part, on the relative speed and precision of the student's performance in these tasks. Where subjective evaluations are indicated, the instructor will make these judgments based on his or her knowledge of the skills required to place a graduate with the expectation of successful on-job performance.

The student will be expected to perform the following tasks in written examination or laboratory demonstration:

Frequency Effects
 Amplifier frequency response
 Decibel power gain
 Decibel voltage gain
 Bode plots
 Miller effect
 Bandwidth

Differential Amplifiers
 DC analysis
 AC analysis
 Input characteristics of an OP-Amp
 Common mode gain
 Bandwidth

Operational Amplifiers
 The 741
 Inverting
 Non-inverting
 Applications
 Linear ICs

Negative Feedback
 Types
 VCVS voltage gain
 ICVS amps
 VCIS amplifier
 Bandwidth

Linear Op-Amp Circuits
 Inverting
 Non-inverting
 Differential amplifiers
 Instrumentation amplifiers
 Summing amplifiers
Current boosters
Voltage controller sources
Automatic gain control

Active Filters
 Ideal response
 Passive filters
 First order stages
 Higher order filters
 Low pass
 High pass
 Band pass

Nonlinear circuits
 Comparators
 Integrators
 Waveform generators
 Differentiator

Oscillators
 Wein bridge
 Colpitts oscillator
 LC oscillators
 Crystal
 555 timer
 PLL

II. Course Learning Outcomes

<table>
<thead>
<tr>
<th>Course Learning Outcome</th>
<th>Methods of Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon successful completion of this course, students will:</td>
<td></td>
</tr>
<tr>
<td>Construct and troubleshoot circuits containing linear integrated circuits</td>
<td>• Exams</td>
</tr>
<tr>
<td></td>
<td>• Homework</td>
</tr>
<tr>
<td></td>
<td>• Labs</td>
</tr>
<tr>
<td></td>
<td>• Quizzes</td>
</tr>
<tr>
<td></td>
<td>• Reassessed in Capstone Experience: CETT 2349 Final Project course</td>
</tr>
</tbody>
</table>

III. Required Text(s), Optional Text(s) and/or Materials to be Supplied by Student.
A printed text covering appropriate material such as Electronics Principles by Malvino and Bates.

IV. Suggested Course Maximum - 30 lecture, 15 laboratory

V. List any specific spatial or physical requirements beyond a typical classroom required to teach the course.
Lecture facilities for 30 students. Laboratory facilities for 18 students must include 9 bench positions each with a digital meter, logic probe, 20 MHz oscilloscope and probes, bread boarding facility with power supply and signal generator, and a stock of basic AC circuit components.
VI. Course Requirements/Grading System – Describe any course specific requirements such as research papers or reading assignments and the generalized grading format for the course

Evaluation of Performance:

Course grades will be determined by the percentage of course objectives for which the student can demonstrate mastery and by attendance as stated in the Departmental Policy sheet provided to the student. Mastery of course objectives will be determined by written examinations, an attendance grade as described in the Departmental Policy handout, a daily work grade which will include graded homework, graded laboratory work, and a comprehensive final exam.

Approximate Grade Evaluation Summary:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major tests</td>
<td>60%</td>
</tr>
<tr>
<td>Attendance</td>
<td>10%</td>
</tr>
<tr>
<td>Lab reports, homework, and quizzes.</td>
<td>15%</td>
</tr>
<tr>
<td>Comprehensive Final examination</td>
<td>15%</td>
</tr>
</tbody>
</table>

Grade Scale:

- 90 to 100: A
- 80 to 89: B
- 70 to 79: C
- 60 to 69: D
- 0 to 59: F

VII. Curriculum Checklist

☐ - Academic General Education Course (from ACGM – but not in WCJC Core)
 No additional documentation needed

☐ - Academic WCJC Core Course
 Attach the Core Curriculum Checklist, including the following:
 • Basic Intellectual Competencies
 • Perspectives
 • Exemplary Educational Objectives

☒ - WECM Courses
 If needed, revise the Program SCANS Matrix & Competencies Checklist.